- 論壇徽章:
- 0
|
人們?cè)谑褂肧QL時(shí)往往會(huì)陷入一個(gè)誤區(qū),即太關(guān)注于所得的結(jié)果是否正確,而忽略
了不同的實(shí)現(xiàn)方法之間可能存在的性能差異,這種性能差異在大型的或是復(fù)雜的數(shù)據(jù)庫(kù)
環(huán)境中(如聯(lián)機(jī)事務(wù)處理OLTP或決策支持系統(tǒng)DSS)中表現(xiàn)得尤為明顯。筆者在工作實(shí)踐
中發(fā)現(xiàn),不良的SQL往往來(lái)自于不恰當(dāng)?shù)乃饕O(shè)計(jì)、不充份的連接條件和不可優(yōu)化的whe
re子句。在對(duì)它們進(jìn)行適當(dāng)?shù)膬?yōu)化后,其運(yùn)行速度有了明顯地提高!下面我將從這三個(gè)
方面分別進(jìn)行總結(jié):
---- 為了更直觀地說(shuō)明問(wèn)題,所有實(shí)例中的SQL運(yùn)行時(shí)間均經(jīng)過(guò)測(cè)試,不超過(guò)1秒的均
表示為(< 1秒)。
---- 測(cè)試環(huán)境--
---- 主機(jī):HP LH II
---- 主頻:330MHZ
---- 內(nèi)存:128兆
---- 操作系統(tǒng):Operserver5.0.4
----數(shù)據(jù)庫(kù):Sybase11.0.3
一、不合理的索引設(shè)計(jì)
----例:表record有620000行,試看在不同的索引下,下面幾個(gè) SQL的運(yùn)行情況:
---- 1.在date上建有一非個(gè)群集索引
select count(*) from record where date >
'19991201' and date < '19991214'and amount >
2000 (25秒)
select date,sum(amount) from record group by date
(55秒)
select count(*) from record where date >
'19990901' and place in ('BJ','SH') (27秒)
---- 分析:
----date上有大量的重復(fù)值,在非群集索引下,數(shù)據(jù)在物理上隨機(jī)存放在數(shù)據(jù)頁(yè)上,在
范圍查找時(shí),必須執(zhí)行一次表掃描才能找到這一范圍內(nèi)的全部行。
---- 2.在date上的一個(gè)群集索引
select count(*) from record where date >
'19991201' and date < '19991214' and amount >
2000 (14秒)
select date,sum(amount) from record group by date
(28秒)
select count(*) from record where date >
'19990901' and place in ('BJ','SH')(14秒)
---- 分析:
---- 在群集索引下,數(shù)據(jù)在物理上按順序在數(shù)據(jù)頁(yè)上,重復(fù)值也排列在一起,因而在范
圍查找時(shí),可以先找到這個(gè)范圍的起末點(diǎn),且只在這個(gè)范圍內(nèi)掃描數(shù)據(jù)頁(yè),避免了大范
圍掃描,提高了查詢速度。
---- 3.在place,date,amount上的組合索引
select count(*) from record where date >
'19991201' and date < '19991214' and amount >
2000 (26秒)
select date,sum(amount) from record group by date
(27秒)
select count(*) from record where date >
'19990901' and place in ('BJ', 'SH')(< 1秒)
---- 分析:
---- 這是一個(gè)不很合理的組合索引,因?yàn)樗那皩?dǎo)列是place,第一和第二條SQL沒(méi)有引
用place,因此也沒(méi)有利用上索引;第三個(gè)SQL使用了place,且引用的所有列都包含在組
合索引中,形成了索引覆蓋,所以它的速度是非?斓。
---- 4.在date,place,amount上的組合索引
select count(*) from record where date >
'19991201' and date < '19991214' and amount >
2000(< 1秒)
select date,sum(amount) from record group by date
(11秒)
select count(*) from record where date >
'19990901' and place in ('BJ','SH')(< 1秒)
---- 分析:
---- 這是一個(gè)合理的組合索引。它將date作為前導(dǎo)列,使每個(gè)SQL都可以利用索引,并
且在第一和第三個(gè)SQL中形成了索引覆蓋,因而性能達(dá)到了最優(yōu)。
---- 5.總結(jié):
---- 缺省情況下建立的索引是非群集索引,但有時(shí)它并不是最佳的;合理的索引設(shè)計(jì)要
建立在對(duì)各種查詢的分析和預(yù)測(cè)上。一般來(lái)說(shuō):
---- ①.有大量重復(fù)值、且經(jīng)常有范圍查詢
(between, >,< ,>=,< =)和order by
、group by發(fā)生的列,可考慮建立群集索引;
---- ②.經(jīng)常同時(shí)存取多列,且每列都含有重復(fù)值可考慮建立組合索引;
---- ③.組合索引要盡量使關(guān)鍵查詢形成索引覆蓋,其前導(dǎo)列一定是使用最頻繁的列。
二、不充份的連接條件:
---- 例:表card有7896行,在card_no上有一個(gè)非聚集索引,表account有191122行,在
account_no上有一個(gè)非聚集索引,試看在不同的表連接條件下,兩個(gè)SQL的執(zhí)行情況:
select sum(a.amount) from account a,
card b where a.card_no = b.card_no(20秒)
---- 將SQL改為:
select sum(a.amount) from account a,
card b where a.card_no = b.card_no and a.
account_no=b.account_no(< 1秒)
---- 分析:
---- 在第一個(gè)連接條件下,最佳查詢方案是將account作外層表,card作內(nèi)層表,利用
card上的索引,其I/O次數(shù)可由以下公式估算為:
---- 外層表account上的22541頁(yè)+(外層表account的191122行*內(nèi)層表card上對(duì)應(yīng)外層
表第一行所要查找的3頁(yè))=595907次I/O
---- 在第二個(gè)連接條件下,最佳查詢方案是將card作外層表,account作內(nèi)層表,利用
account上的索引,其I/O次數(shù)可由以下公式估算為:
---- 外層表card上的1944頁(yè)+(外層表card的7896行*內(nèi)層表account上對(duì)應(yīng)外層表每一
行所要查找的4頁(yè))= 33528次I/O
---- 可見,只有充份的連接條件,真正的最佳方案才會(huì)被執(zhí)行。
---- 總結(jié):
---- 1.多表操作在被實(shí)際執(zhí)行前,查詢優(yōu)化器會(huì)根據(jù)連接條件,列出幾組可能的連接方
案并從中找出系統(tǒng)開銷最小的最佳方案。連接條件要充份考慮帶有索引的表、行數(shù)多的
表;內(nèi)外表的選擇可由公式:外層表中的匹配行數(shù)*內(nèi)層表中每一次查找的次數(shù)確定,乘
積最小為最佳方案。
---- 2.查看執(zhí)行方案的方法-- 用set showplanon,打開showplan選項(xiàng),就可以看到連
接順序、使用何種索引的信息;想看更詳細(xì)的信息,需用sa角色執(zhí)行dbcc(3604,310,30
2)。
三、不可優(yōu)化的where子句
---- 1.例:下列SQL條件語(yǔ)句中的列都建有恰當(dāng)?shù)乃饕珗?zhí)行速度卻非常慢:
select * from record where
substring(card_no,1,4)='5378'(13秒)
select * from record where
amount/30< 1000(11秒)
select * from record where
convert(char(10),date,112)='19991201'(10秒)
---- 分析:
---- where子句中對(duì)列的任何操作結(jié)果都是在SQL運(yùn)行時(shí)逐列計(jì)算得到的,因此它不得不
進(jìn)行表搜索,而沒(méi)有使用該列上面的索引;如果這些結(jié)果在查詢編譯時(shí)就能得到,那么
就可以被SQL優(yōu)化器優(yōu)化,使用索引,避免表搜索,因此將SQL重寫成下面這樣:
select * from record where card_no like
'5378%'(< 1秒)
select * from record where amount
< 1000*30(< 1秒)
select * from record where date= '1999/12/01'
(< 1秒)
---- 你會(huì)發(fā)現(xiàn)SQL明顯快起來(lái)!
---- 2.例:表stuff有200000行,id_no上有非群集索引,請(qǐng)看下面這個(gè)SQL:
select count(*) from stuff where id_no in('0','1')
(23秒)
---- 分析:
---- where條件中的'in'在邏輯上相當(dāng)于'or',所以語(yǔ)法分析器會(huì)將in ('0','1')轉(zhuǎn)化
為id_no ='0' or id_no='1'來(lái)執(zhí)行。我們期望它會(huì)根據(jù)每個(gè)or子句分別查找,再將結(jié)果
相加,這樣可以利用id_no上的索引;但實(shí)際上(根據(jù)showplan),它卻采用了"OR策略"
,即先取出滿足每個(gè)or子句的行,存入臨時(shí)數(shù)據(jù)庫(kù)的工作表中,再建立唯一索引以去掉
重復(fù)行,最后從這個(gè)臨時(shí)表中計(jì)算結(jié)果。因此,實(shí)際過(guò)程沒(méi)有利用id_no上索引,并且完
成時(shí)間還要受tempdb數(shù)據(jù)庫(kù)性能的影響。
---- 實(shí)踐證明,表的行數(shù)越多,工作表的性能就越差,當(dāng)stuff有620000行時(shí),執(zhí)行時(shí)
間竟達(dá)到220秒!還不如將or子句分開:
select count(*) from stuff where id_no='0'
select count(*) from stuff where id_no='1'
---- 得到兩個(gè)結(jié)果,再作一次加法合算。因?yàn)槊烤涠际褂昧怂饕瑘?zhí)行時(shí)間只有3秒,
在620000行下,時(shí)間也只有4秒;蛘撸酶玫姆椒,寫一個(gè)簡(jiǎn)單的存儲(chǔ)過(guò)程:
create proc count_stuff as
declare @a int
declare @b int
declare @c int
declare @d char(10)
begin
select @a=count(*) from stuff where id_no='0'
select @b=count(*) from stuff where id_no='1'
end
select @c=@a+@b
select @d=convert(char(10),@c)
print @d
---- 直接算出結(jié)果,執(zhí)行時(shí)間同上面一樣快!
---- 總結(jié):
---- 可見,所謂優(yōu)化即where子句利用了索引,不可優(yōu)化即發(fā)生了表掃描或額外開銷。
---- 1.任何對(duì)列的操作都將導(dǎo)致表掃描,它包括數(shù)據(jù)庫(kù)函數(shù)、計(jì)算表達(dá)式等等,查詢時(shí)
要盡可能將操作移至等號(hào)右邊。
---- 2.in、or子句常會(huì)使用工作表,使索引失效;如果不產(chǎn)生大量重復(fù)值,可以考慮把
子句拆開;拆開的子句中應(yīng)該包含索引。
---- 3.要善于使用存儲(chǔ)過(guò)程,它使SQL變得更加靈活和高效。
---- 從以上這些例子可以看出,SQL優(yōu)化的實(shí)質(zhì)就是在結(jié)果正確的前提下,用優(yōu)化器可
以識(shí)別的語(yǔ)句,充份利用索引,減少表掃描的I/O次數(shù),盡量避免表搜索的發(fā)生。其實(shí)S
QL的性能優(yōu)化是一個(gè)復(fù)雜的過(guò)程,上述這些只是在應(yīng)用層次的一種體現(xiàn),深入研究還會(huì)
涉及數(shù)據(jù)庫(kù)層的資源配置、網(wǎng)絡(luò)層的流量控制以及操作系統(tǒng)層的總體設(shè)計(jì)。
1.合理使用索引
索引是數(shù)據(jù)庫(kù)中重要的數(shù)據(jù)結(jié)構(gòu),它的根本目的就是為了提高查詢效率,F(xiàn)在大多數(shù)的數(shù)據(jù)庫(kù)產(chǎn)品都采用IBM最先提出的ISAM索引結(jié)構(gòu)。索引的使用要恰到好處,其使用原則如下:
●在經(jīng)常進(jìn)行連接,但是沒(méi)有指定為外鍵的列上建立索引,而不經(jīng)常連接的字段則由優(yōu)化器自動(dòng)生成索引。
●在頻繁進(jìn)行排序或分組(即進(jìn)行g(shù)roup by或order by操作)的列上建立索引。
●在條件表達(dá)式中經(jīng)常用到的不同值較多的列上建立檢索,在不同值少的列上不要建立索引。比如在雇員表的“性別”列上只有“男”與“女”兩個(gè)不同值,因此就無(wú)必要建立索引。如果建立索引不但不會(huì)提高查詢效率,反而會(huì)嚴(yán)重降低更新速度。
●如果待排序的列有多個(gè),可以在這些列上建立復(fù)合索引(compound index)。
●使用系統(tǒng)工具。如Informix數(shù)據(jù)庫(kù)有一個(gè)tbcheck工具,可以在可疑的索引上進(jìn)行檢查。在一些數(shù)據(jù)庫(kù)服務(wù)器上,索引可能失效或者因?yàn)轭l繁操作而使得讀取效率降低,如果一個(gè)使用索引的查詢不明不白地慢下來(lái),可以試著用tbcheck工具檢查索引的完整性,必要時(shí)進(jìn)行修復(fù)。另外,當(dāng)數(shù)據(jù)庫(kù)表更新大量數(shù)據(jù)后,刪除并重建索引可以提高查詢速度。
2.避免或簡(jiǎn)化排序
應(yīng)當(dāng)簡(jiǎn)化或避免對(duì)大型表進(jìn)行重復(fù)的排序。當(dāng)能夠利用索引自動(dòng)以適當(dāng)?shù)拇涡虍a(chǎn)生輸出時(shí),優(yōu)化器就避免了排序的步驟。以下是一些影響因素:
●索引中不包括一個(gè)或幾個(gè)待排序的列;
●group by或order by子句中列的次序與索引的次序不一樣;
●排序的列來(lái)自不同的表。
為了避免不必要的排序,就要正確地增建索引,合理地合并數(shù)據(jù)庫(kù)表(盡管有時(shí)可能影響表的規(guī)范化,但相對(duì)于效率的提高是值得的)。如果排序不可避免,那么應(yīng)當(dāng)試圖簡(jiǎn)化它,如縮小排序的列的范圍等。
3.消除對(duì)大型表行數(shù)據(jù)的順序存取
在嵌套查詢中,對(duì)表的順序存取對(duì)查詢效率可能產(chǎn)生致命的影響。比如采用順序存取策略,一個(gè)嵌套3層的查詢,如果每層都查詢1000行,那么這個(gè)查詢就要查詢10億行數(shù)據(jù)。避免這種情況的主要方法就是對(duì)連接的列進(jìn)行索引。例如,兩個(gè)表:學(xué)生表(學(xué)號(hào)、姓名、年齡……)和選課表(學(xué)號(hào)、課程號(hào)、成績(jī))。如果兩個(gè)表要做連接,就要在“學(xué)號(hào)”這個(gè)連接字段上建立索引。
還可以使用并集來(lái)避免順序存取。盡管在所有的檢查列上都有索引,但某些形式的where子句強(qiáng)迫優(yōu)化器使用順序存取。下面的查詢將強(qiáng)迫對(duì)orders表執(zhí)行順序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
雖然在customer_num和order_num上建有索引,但是在上面的語(yǔ)句中優(yōu)化器還是使用順序存取路徑掃描整個(gè)表。因?yàn)檫@個(gè)語(yǔ)句要檢索的是分離的行的集合,所以應(yīng)該改為如下語(yǔ)句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
這樣就能利用索引路徑處理查詢。
4.避免相關(guān)子查詢
一個(gè)列的標(biāo)簽同時(shí)在主查詢和where子句中的查詢中出現(xiàn),那么很可能當(dāng)主查詢中的列值改變之后,子查詢必須重新查詢一次。查詢嵌套層次越多,效率越低,因此應(yīng)當(dāng)盡量避免子查詢。如果子查詢不可避免,那么要在子查詢中過(guò)濾掉盡可能多的行。
5.避免困難的正規(guī)表達(dá)式
MATCHES和LIKE關(guān)鍵字支持通配符匹配,技術(shù)上叫正規(guī)表達(dá)式。但這種匹配特別耗費(fèi)時(shí)間。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在這種情況下也還是采用順序掃描的方式。如果把語(yǔ)句改為SELECT * FROM customer WHERE zipcode >“98000”,在執(zhí)行查詢時(shí)就會(huì)利用索引來(lái)查詢,顯然會(huì)大大提高速度。
另外,還要避免非開始的子串。例如語(yǔ)句:SELECT * FROM customer WHERE zipcode[2,3] >“80”,在where子句中采用了非開始子串,因而這個(gè)語(yǔ)句也不會(huì)使用索引。
6.使用臨時(shí)表加速查詢
把表的一個(gè)子集進(jìn)行排序并創(chuàng)建臨時(shí)表,有時(shí)能加速查詢。它有助于避免多重排序操作,而且在其他方面還能簡(jiǎn)化優(yōu)化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>“98000”
ORDER BY cust.name
如果這個(gè)查詢要被執(zhí)行多次而不止一次,可以把所有未付款的客戶找出來(lái)放在一個(gè)臨時(shí)文件中,并按客戶的名字進(jìn)行排序:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在臨時(shí)表中查詢:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
臨時(shí)表中的行要比主表中的行少,而且物理順序就是所要求的順序,減少了磁盤I/O,所以查詢工作量可以得到大幅減少。
注意:臨時(shí)表創(chuàng)建后不會(huì)反映主表的修改。在主表中數(shù)據(jù)頻繁修改的情況下,注意不要丟失數(shù)據(jù)。 |
|