- 論壇徽章:
- 0
|
Eric Fang 2010-01-19
--------------------------------------------------------------
本站分析linux內(nèi)核源碼,版本號(hào)為2.6.32.3
轉(zhuǎn)載請(qǐng)注明出處:
http://ericfang.cublog.cn/
--------------------------------------------------------------
閱讀本文之前,如果你對(duì)設(shè)備驅(qū)動(dòng)模型還不了解,請(qǐng)先閱讀本站設(shè)備驅(qū)動(dòng)模型相關(guān)文章。
Platform總線(xiàn)是kernel中的一種虛擬總線(xiàn),2.6版本很多驅(qū)動(dòng)都用它來(lái)實(shí)現(xiàn)。
一.Platform初始化
系統(tǒng)啟動(dòng)時(shí)初始化時(shí)創(chuàng)建了platform_bus設(shè)備和platform_bus_type總線(xiàn):
內(nèi)核初始化函數(shù)kernel_init()中調(diào)用了do_basic_setup() ,該函數(shù)中調(diào)用driver_init(),該函數(shù)中調(diào)用platform_bus_init(),我們看看platform_bus_init()函數(shù):
int __init platform_bus_init(void)
{
int error;
early_platform_cleanup();
error = device_register(&platform_bus);
if (error)
return error;
error = bus_register(&platform_bus_type);
if (error)
device_unregister(&platform_bus);
return error;
}
device_register(&platform_bus)中的platform_bus如下:
struct device platform_bus = {
.init_name = "platform",
};
改函數(shù)把設(shè)備名為platform 的設(shè)備platform_bus注冊(cè)到系統(tǒng)中,其他的platform的設(shè)備都會(huì)以它為parent。它在sysfs中目錄下.即 /sys/devices/platform。
接著bus_register(&platform_bus_type)注冊(cè)了platform_bus_type總線(xiàn),看一下改總線(xiàn)的定義:
struct bus_type platform_bus_type = {
.name = "platform",
.dev_attrs = platform_dev_attrs,
.match = platform_match,
.uevent = platform_uevent,
.pm = &platform_dev_pm_ops,
};
默認(rèn)platform_bus_type中沒(méi)有定義probe函數(shù)。
我們分析一下其中platform_match和platform_uevent函數(shù)。在分析設(shè)備驅(qū)動(dòng)模型是已經(jīng)知道總線(xiàn)類(lèi)型match函數(shù)是在設(shè)備匹配驅(qū)動(dòng)時(shí)調(diào)用,uevent函數(shù)在產(chǎn)生事件時(shí)調(diào)用。
platform_match()代碼如下:
static int platform_match(struct device *dev, struct device_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct platform_driver *pdrv = to_platform_driver(drv);
/* match against the id table first */
if (pdrv->id_table)
return platform_match_id(pdrv->id_table, pdev) != NULL;
/* fall-back to driver name match */
return (strcmp(pdev->name, drv->name) == 0);
}
static const struct platform_device_id *platform_match_id(
struct platform_device_id *id,
struct platform_device *pdev)
{
while (id->name[0]) {
if (strcmp(pdev->name, id->name) == 0) {
pdev->id_entry = id;
return id;
}
id++;
}
return NULL;
}
不難看出,如果pdrv的id_table數(shù)組中包含了pdev->name,或者drv->name和pdev->name名字相同,都會(huì)認(rèn)為是匹配成功。id_table數(shù)組是為了應(yīng)對(duì)那些對(duì)應(yīng)設(shè)備和驅(qū)動(dòng)的drv->name和pdev->name名字不同的情況。
再看看platform_uevent()函數(shù):
static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct platform_device *pdev = to_platform_device(dev);
add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
(pdev->id_entry) ? pdev->id_entry->name : pdev->name);
return 0;
}
添加了MODALIAS環(huán)境變量,我們回顧一下:platform_bus. parent->kobj->kset->uevent_ops為device_uevent_ops,bus_uevent_ops的定義如下:
static struct kset_uevent_ops device_uevent_ops = {
.filter = dev_uevent_filter,
.name = dev_uevent_name,
.uevent = dev_uevent,
};
當(dāng)調(diào)用device_add()時(shí)會(huì)調(diào)用kobject_uevent(&dev->kobj, KOBJ_ADD)產(chǎn)生一個(gè)事件,這個(gè)函數(shù)中會(huì)調(diào)用相應(yīng)的kset_uevent_ops的uevent函數(shù),這里即為dev_uevent(),我們看一下這個(gè)函數(shù)的代碼片段:
static int dev_uevent(struct kset *kset, struct kobject *kobj,
struct kobj_uevent_env *env)
{
.
.
.
/* have the bus specific function add its stuff */
if (dev->bus && dev->bus->uevent) {
retval = dev->bus->uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: bus uevent() returned %d\n",
dev_name(dev), __func__, retval);
}
.
.
.
}
從這里看到如果bus->uevent()函數(shù)存在則會(huì)調(diào)用它。
到這里我們清楚了platform_uevent會(huì)在哪里調(diào)用了。
二.Platform設(shè)備的注冊(cè)
我們?cè)谠O(shè)備模型的分析中知道了把設(shè)備添加到系統(tǒng)要調(diào)用device_initialize()和platform_device_add(pdev)函數(shù)。
對(duì)于platform設(shè)備的初始化,內(nèi)核源碼也提供了platform_device_alloc()函數(shù)。
對(duì)于platform設(shè)備的初注冊(cè),內(nèi)核源碼提供了platform_device_add()函數(shù),它是進(jìn)行一系列的操作后調(diào)用device_add()將設(shè)備注冊(cè)到相應(yīng)的總線(xiàn)上,內(nèi)核代碼中platform設(shè)備的其他注冊(cè)函數(shù)都是基于這個(gè)函數(shù),如platform_device_register()、platform_device_register_simple()、platform_device_register_data()等。
我們對(duì)這些函數(shù)逐個(gè)分析,首先看看初始化函數(shù)platform_device_alloc():
struct platform_device * platform_device_alloc(const char *name, int id)
{
struct platform_object *pa;
pa = kzalloc(sizeof(struct platform_object) + strlen(name), GFP_KERNEL);
if (pa) {
strcpy(pa->name, name);
pa->pdev.name = pa->name;
pa->pdev.id = id;
device_initialize(&pa->pdev.dev);
pa->pdev.dev.release = platform_device_release;
}
return pa ? &pa->pdev : NULL;
}
該函數(shù)首先為platform設(shè)備分配內(nèi)存空間,這里的struct platform_object結(jié)構(gòu)是struct platform _device結(jié)構(gòu)的封裝,其定義如下:
struct platform_object {
struct platform_device pdev;
char name[1];
};
其中第二個(gè)字段name的地址用于存放第一個(gè)字段pdev的name指針上的內(nèi)容,函數(shù)中的代碼說(shuō)明了這點(diǎn):
strcpy(pa->name, name);
pa->pdev.name = pa->name;
接著用輸入?yún)?shù)id初始化platform_device的id字段,這個(gè)id是在設(shè)置代表它的kobject時(shí)會(huì)用到的,我們將在后面分析到,如果不用它,則設(shè)為-1。
接著調(diào)用device_initialize()初始化platform_device內(nèi)嵌的device,并設(shè)置其release函數(shù)指針。
platform_device_alloc()函數(shù)分析完了。
接著我們看看platform_device_add()函數(shù):
int platform_device_add(struct platform_device *pdev)
{
int i, ret = 0;
if (!pdev)
return -EINVAL;
if (!pdev->dev.parent)
pdev->dev.parent = & platform_bus;
pdev->dev.bus = &platform_bus_type;
設(shè)置父節(jié)點(diǎn)和總線(xiàn),這里的platform_bus和platform_bus_type在上面的初始化部分已經(jīng)分析。
if (pdev->id != -1)
dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id);
else
dev_set_name(&pdev->dev, "%s", pdev->name);
設(shè)置pdev->dev內(nèi)嵌的kobj的name字段,它是pdev->name指向的內(nèi)容加上id,如果id為-1則忽略它,關(guān)于dev_set_name()函數(shù)已經(jīng)在分析設(shè)備驅(qū)動(dòng)模型時(shí)分析過(guò),這里不再累贅。
for (i = 0; i num_resources; i++) {
struct resource *p, *r = &pdev->resource;
if (r->name == NULL)
r->name = dev_name(&pdev->dev);
p = r->parent;
if (!p) {
if (resource_type(r) == IORESOURCE_MEM)
p = &iomem_resource;
else if (resource_type(r) == IORESOURCE_IO)
p = &ioport_resource;
}
if (p && insert_resource(p, r)) {
printk(KERN_ERR
"%s: failed to claim resource %d\n",
dev_name(&pdev->dev), i);
ret = -EBUSY;
goto failed;
}
}
初始化資源并將資源分配給它,每個(gè)資源的它的parent不存在則根據(jù)flags域設(shè)置parent,flags為IORESOURCE_MEM,則所表示的資源為I/O映射內(nèi)存,flags為IORESOURCE_IO,則所表示的資源為I/O端口。
pr_debug("Registering platform device '%s'. Parent at %s\n",
dev_name(&pdev->dev), dev_name(pdev->dev.parent));
ret = device_add(&pdev->dev);
就在這里把設(shè)備注冊(cè)到總線(xiàn)上,如果你對(duì)device_add()函數(shù)不熟悉,請(qǐng)參考本站的設(shè)別模型分析部分內(nèi)容。
if (ret == 0)
return ret;
failed:
while (--i >= 0) {
struct resource *r = &pdev->resource;
unsigned long type = resource_type(r);
if (type == IORESOURCE_MEM || type == IORESOURCE_IO)
release_resource(r);
}
除錯(cuò)撤銷(xiāo)的內(nèi)容。
return ret;
}
platform_device_add()函數(shù)分析完了,我們看下platform_device_register()函數(shù):
int platform_device_register(struct platform_device *pdev)
{
device_initialize(&pdev->dev);
return platform_device_add(pdev);
}
沒(méi)錯(cuò)它就是初始化pdev->dev后調(diào)用platform_device_add()把它注冊(cè)到platform_bus_type上。
在看看platform_device_register_simple()函數(shù):
struct platform_device *platform_device_register_simple(const char *name,
int id,
struct resource *res,
unsigned int num)
{
struct platform_device *pdev;
int retval;
pdev = platform_device_alloc(name, id);
if (!pdev) {
retval = -ENOMEM;
goto error;
}
if (num) {
retval = platform_device_add_resources(pdev, res, num);
if (retval)
goto error;
}
retval = platform_device_add(pdev);
if (retval)
goto error;
return pdev;
error:
platform_device_put(pdev);
return ERR_PTR(retval);
}
該函數(shù)就是調(diào)用了platform_device_alloc()和platform_device_add()函數(shù)來(lái)創(chuàng)建的注冊(cè)platform device,函數(shù)也根據(jù)res參數(shù)分配資源,看看platform_device_add_resources()函數(shù):
int platform_device_add_resources(struct platform_device *pdev,
struct resource *res, unsigned int num)
{
struct resource *r;
r = kmalloc(sizeof(struct resource) * num, GFP_KERNEL);
if (r) {
memcpy(r, res, sizeof(struct resource) * num);
pdev->resource = r;
pdev-> num_resources = num;
}
return r ? 0 : -ENOMEM;
}
很簡(jiǎn)單,為資源分配內(nèi)存空間,并拷貝參數(shù)res中的內(nèi)容,鏈接到device并設(shè)置其num_resources。
三.Platform設(shè)備的注冊(cè)
我們?cè)谠O(shè)備驅(qū)動(dòng)模型的分析中已經(jīng)知道驅(qū)動(dòng)在注冊(cè)要調(diào)用driver_register(),platform driver的注冊(cè)函數(shù)platform_driver_register()同樣也是進(jìn)行其它的一些初始化后調(diào)用driver_register()將驅(qū)動(dòng)注冊(cè)到platform_bus_type總線(xiàn)上,看一下這個(gè)函數(shù):
int platform_driver_register(struct platform_driver *drv)
{
drv->driver.bus = &platform_bus_type;
if (drv->probe)
drv-> driver.probe = platform_drv_probe;
if (drv->remove)
drv->driver.remove = platform_drv_remove;
if (drv->shutdown)
drv->driver.shutdown = platform_drv_shutdown;
return driver_register(&drv->driver);
}
這里我們要先看看struct platform_driver結(jié)構(gòu):
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*resume)(struct platform_device *);
struct device_driver driver;
struct platform_device_id *id_table;
};
上面的函數(shù)指定了內(nèi)嵌的driver的bus字段為platform_bus_type,即為它將要注冊(cè)到的總線(xiàn)。
然后設(shè)定了platform_driver內(nèi)嵌的driver的probe、remove、shutdown函數(shù)。
看下相應(yīng)的這三個(gè)函數(shù):
static int platform_drv_probe(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);
return drv->probe(dev);
}
static int platform_drv_remove(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);
return drv->remove(dev);
}
static void platform_drv_shutdown(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);
drv->shutdown(dev);
}
從這三個(gè)函數(shù)的代碼可以看到,又找到了相應(yīng)的platform_driver和platform_device,然后調(diào)用platform_driver的probe、remove、shutdown函數(shù)。這是一種高明的做法:在不針對(duì)某個(gè)驅(qū)動(dòng)具體的probe、remove、shutdown指向的函數(shù),而通過(guò)上三個(gè)過(guò)度函數(shù)來(lái)找到platform_driver,然后調(diào)用probe、remove、shutdown接口。
如果設(shè)備和驅(qū)動(dòng)都注冊(cè)了,就可以通過(guò)bus ->match、 bus->probe或driver->probe進(jìn)行設(shè)備驅(qū)動(dòng)匹配了,這部分內(nèi)容將留到具體的設(shè)備中再做分析。
在2.6.32.3版本的代碼中,還針對(duì)某些不需要產(chǎn)生hotplug事件的設(shè)備提供設(shè)備驅(qū)動(dòng)的匹配函數(shù)platform_driver_probe(),調(diào)用這個(gè)函數(shù)前首先要注冊(cè)設(shè)備,看一下這個(gè)函數(shù):
int __init_or_module platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))
{
int retval, code;
/* make sure driver won't have bind/unbind attributes */
drv->driver.suppress_bind_attrs = true;
/* temporary section violation during probe() */
drv-> probe = probe;
retval = code = platform_driver_register(drv);
/*
* Fixup that section violation, being paranoid about code scanning
* the list of drivers in order to probe new devices. Check to see
* if the probe was successful, and make sure any forced probes of
* new devices fail.
*/
spin_lock(&platform_bus_type.p->klist_drivers.k_lock);
drv->probe = NULL;
if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
retval = -ENODEV;
drv->driver.probe = platform_drv_probe_fail;
spin_unlock(&platform_bus_type.p->klist_drivers.k_lock);
if (code != retval)
platform_driver_unregister(drv);
return retval;
}
該函數(shù)先設(shè)置drv的probe為輸入函數(shù),然后將drv注冊(cè)到總線(xiàn),這個(gè)過(guò)程回去匹配設(shè)備,這時(shí)會(huì)找到調(diào)用這個(gè)函數(shù)前注冊(cè)的設(shè)備,然后將其掛鉤,接著設(shè)置drv->probe為NULL,設(shè)置drv->driver.probe 為 platform_drv_probe_fail,這樣后面如果產(chǎn)生匹配事件都會(huì)是匹配失敗,也即platform_drv_probe_fail()匹配不成功,其代碼如下:
static int platform_drv_probe_fail(struct device *_dev)
{
return -ENXIO;
}
正如我們分析的一樣。
到此,Platform總線(xiàn)分析完了,后面其他模塊的分析中將會(huì)有platform的例子,有了上面的基礎(chǔ),到時(shí)我們就可以輕松的分析了^_^!
本文來(lái)自ChinaUnix博客,如果查看原文請(qǐng)點(diǎn):http://blog.chinaunix.net/u3/92745/showart_2152813.html |
|